Abstract
The Aerospace Corporation’s Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2 atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (~25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a strong phase-locked 2 day wave (PL/TDW). We have analyzed the wave trapping conditions for the upper mesosphere and lower thermosphere using a combination of data and empirical models and found that the airglow layers were located in a region of ducting. The PL/TDW-disturbed wind profile was effective in supporting a high degree of ducting, whereas without the PL/TDW the ducting was minimal or nonexistent. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. In OHM the leading disturbance was an isolated disturbance resembling a solitary wave. The characteristics of the wave train suggest an undular bore with some turbulent dissipation at the leading edge.
Original language | American English |
---|---|
Journal | Journal of Geophysical Research: Atmospheres |
Volume | 117 |
DOIs | |
State | Published - Nov 27 2012 |
Keywords
- 2 day wave
- airglow frontal events
- ducted gravity waves
- mesospheric bores
- solitary waves
- Mesospheric dynamics
- Acoustic-gravity waves
- Tides and planetary waves
Disciplines
- Atmospheric Sciences