Anisotropic Fluid Modeling of Ionospheric Upflow: Effects of Low‐Altitude Anisotropy and Thermospheric Winds

M. R. Burleigh, M. Zettergren

Research output: Contribution to journalArticlepeer-review

Abstract

<p> A new anisotropic fluid model is developed to describe ionospheric upflow responses to magnetospheric forcing by electric fields and broadband ELF waves at altitudes of 90&ndash;2500 km. This model is based on a bi&hyphen;Maxwellian ion distribution and solves time&hyphen;dependent, nonlinear equations of conservation of mass, momentum, parallel energy, and perpendicular energy for six ion species important to <em> E </em> , <em> F </em> , and topside ionospheric regions. It includes chemical and collisional interactions with the neutral atmosphere, photoionization, and electron impact ionization. This model is used to examine differences between isotropic and anisotropic descriptions of ionospheric upflow driven by DC electric fields, possible effects of low&hyphen;altitude (km) wave heating, and impacts of neutral winds on ion upflow. Results indicate that isotropic models may overestimate field&hyphen;aligned ion velocity responses by as much as &sim;48%. Simulations also show significant ionospheric responses at low altitudes to wave heating for very large power spectral densities, but ion temperature anisotropies below the <em> F </em> region peak are dominated by frictional heating from DC electric fields. Neutral winds are shown to play an important role regulating ion upflow. Thermospheric winds can enhance or suppress upward fluxes driven by DC and BBELF fields by 10&ndash;20% for the cases examined. The time history of the neutral winds also affects the amount of ionization transported to higher altitudes by DC electric fields.</p>
Original languageAmerican English
JournalJournal of Geophysical Research: Space Physics
Volume122
DOIs
StatePublished - Jan 3 2017

Keywords

  • anisotropic fluid modeling
  • ionospheric upflow
  • effects of low‐altitude anisotropy
  • thermospheric winds

Disciplines

  • Atmospheric Sciences

Cite this