Classifying injuries occurrence in motor vehicle collisions using artificial neural network.

Dahai Liu, Desmond Solomon, Leon Hardy

Research output: Contribution to conferencePresentation

Abstract

Vehicle collisions amount to a significant loss of life in America. This study used artificial neural networks as a means to predict the occurrence of injury of a vehicle collision. Using Neural Ware’s Predict software a neural network structure was trained, tested, and validated using data from the 2006 and 2007 Florida Traffic Crash Database. The objective was to assess whether or not properly designed neural network architecture could adequately classify the levels of the “Injury Occurrence” output variable, given certain inputs such as demographic and environmental factors involved in crashes. A Kolmogorov-Smirnov statistical analysis was employed to objectively assess whether or not the neural network properly classified the levels of Injury Occurrence and to what extent. The artificial network’s computational power was iteratively increased by adding hidden layers thus boosting its performance. A sensitivity analysis was used to find the level of contribution the input variables had on the “Injury Occurrence” output variable. Top three positive and negative most impacting factors were identified and the implications were discussed at the end of the paper.

Original languageAmerican English
StatePublished - Jan 1 2011

Keywords

  • Motor vehicle collisions
  • Injuries
  • Artificial neural network

Disciplines

  • Biology

Cite this