Dipole Vortex Patterns. Beyond Hypergeometric

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that loop vortices are created by a point-like magnetic dipole in an infinite superconductor space. The geometry of the vortex system is obtained through analytic solutions of the linearized Ginzburg-Landau equation described in terms of Heun functions, generalizing the traditional hypergeometric behavior of such magnetic singularity.
Original languageAmerican English
JournalJournal of Geometry and Symmetry in Physics
Volume25
StatePublished - 2012
Externally publishedYes

Keywords

  • Heun functions
  • heun differential equation
  • hypergeometric
  • vortex states
  • Gizburg-Landau
  • coalescence of singularities

Disciplines

  • Mathematics
  • Non-linear Dynamics
  • Ordinary Differential Equations and Applied Dynamics
  • Physics

Cite this