Abstract
We investigate the possibility to constrain the evolution of the 2016 M7.8 Kaikoura earthquake evolution based on Global Positioning System signal-derived ionospheric total electron content (TEC) perturbations, that represent plasma responses to infrasonic acoustic waves (IAWs) generated by surface motion. This earthquake exhibited unusual complexity and some first-order aspects of its evolution remain unclear; for example, how and when the Papatea fault (PF) and the corresponding large surface deformation occurred. For various earthquake models, a seismic wave propagation code is used to simulate time-dependent surface deformations, which then excite IAWs in a 3D compressible nonlinear atmospheric model, coupled with a 2D nonlinear multispecies ionospheric plasma dynamic model. Our preferred finite-fault model reproduces the amplitudes, shapes, and time epochs of appearance of detected TEC perturbations well. Additionally, the incorporation of the PF, ruptured during the earthquake, results in the closest agreement between simulated and observed near-zenith vertical TEC perturbations, whereas its absence shows significant discrepancy. This supports the hypothesis that the PF was ruptured during the Kaikoura earthquake. Furthermore, the IAWs and resulting ionospheric plasma disturbances contain additional information on the PF rupture progression, including the timing of initiation and propagation direction, indicating new opportunities to further constrain the PF rupture with low elevation angle “slant” TEC data. The results confirm the ability for TEC measurements to constrain evolutions of large crustal earthquakes to provide new insight beyond traditional seismic and geodetic data sets.
Original language | American English |
---|---|
Journal | AGU Advances |
Volume | 2 |
DOIs | |
State | Published - May 18 2021 |
Keywords
- coupled geophysical processes
- earthquake–atmosphere interaction
- finite‐fault kinematics
- infrasonic acoustic waves
- ionospheric plasma disturbances
- total electron content
Disciplines
- Atmospheric Sciences