Abstract
The quest for multifunctional carbon fiber reinforced composites (CFRPs) expedited the use of several nano reinforcements such as zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs). Zinc oxide is a semi-conductor with good piezoelectric and pyroelectric properties. These properties could be transmitted to CFRPs when a nanophase of ZnO is embedded within CFRPs. In lieu of ZnO nanorods, Bucky paper comprising mat of CNTs could be sandwiched in-between composite laminae to construct a functionally graded composite with enhanced electrical conductivities. In this study, different configurations of hybrid composites based on carbon fibers with different combinations of ZnO nanorods and Bucky paper were fabricated. The composites were tested mechanically via tensile and dynamic mechanical analysis (DMA) tests to examine the effect of the different nanoadditives on the stiffness, strength and the damping performance of the hybrid composites. Electrical resistivities of the hybrid composites were probed to examine the contributions of the different nanoadditives. The results suggest that there are certain hybrid composite combinations that could lead to the development of highly multifunctional composites with better strength, stiffness, damping and electrical conductivity.
Original language | American English |
---|---|
Journal | C — Journal of Carbon Research |
Volume | 4 |
DOIs | |
State | Published - Jan 18 2018 |
Keywords
- carbon fiber
- ZnO nanorods
- Bucky paper
- hybrid composites
Disciplines
- Energy Systems
- Nanotechnology Fabrication