Nonlinear Gravity Wave Forcing as a Source of Acoustic Waves in the Mesosphere, Thermosphere, and Ionosphere

Research output: Contribution to journalArticlepeer-review

Abstract

Numerical simulations demonstrate theoretical predictions that gravity waves with short periods (∼4–8 min) in the mesosphere and lower thermosphere may force secondary acoustic waves, with harmonic periods (∼2-4 minutes), that can reach detectable amplitudes in the thermosphere and ionosphere. The mechanism is through their vertical fluxes of vertical momentum, which lead to forcing as they are disrupted by varying stratification or instability. This is shown likely to occur where horizontally or radially opposing gravity waves interact at large amplitudes, such as above large convective sources, and after overturning. Evanescence and reflection of the waves can lead to further enhancements of the vertical fluxes and the potential for forcing. Results thus identify one of likely several mechanisms for the nonlinear conversion from gravity waves to acoustic waves, to elucidate an unappreciated source of vertical coupling.

Original languageAmerican English
JournalGeophysical Research Letters
Volume44
DOIs
StatePublished - Dec 11 2017

Keywords

  • gravity waves
  • acoustic waves
  • mesosphere
  • thermosphere
  • ionosphere

Disciplines

  • Cosmology, Relativity, and Gravity
  • Stars, Interstellar Medium and the Galaxy

Cite this