Abstract
From a single image of a persistent trail left by a -1.5 magnitude Leonid meteor on November 17, 1998, the relative winds between 92.5 and 98 km altitude are derived, where the altitudes are determined by a sodium lidar. These are converted to true winds 82 sec after the appearance of the meteor by fixing the winds at 98 km to match the results of following the trail with the lidar for twelve minutes. The image and winds reveal a fine example of the effects of a gravity wave having a vertical wavelenth of 5.50 ± 0.02 km, a horizontal wavelength of 2650 ± 60 kin, an intrinsic period of 19.5 ± 0.4 hours, and an observed period of 8.6 ± 0.1 hours. Effects of the gravity wave are still present in the wind field 70 rain later.
Original language | American English |
---|---|
Journal | Journal of Geophysical Research |
Volume | 106 |
State | Published - Oct 1 2001 |
Externally published | Yes |
Keywords
- Leonid meteor
- sodium lidar
- Diamond Ring
- gravity wave
Disciplines
- Physical Sciences and Mathematics