Abstract
Understanding the future development of COVID-19 is the key to contain the spreading of the coronavirus. The purpose of this paper is to explore a potential relationship between United States residents’ daily trips by distance and the COVID-19 infections in the near future. The study used the daily travel data from the Bureau of Transportation Statistics (BTS) and the COVID-19 data from the Centers for Disease Control and Prevention (CDC) in the United States. Time-series forecast models using Autoregressive Moving Average (ARIMA) method were constructed to project future trends of United States residents’ daily trips by distance at the national level from November 30, 2020, to February 28, 2021. A comparative trend analysis was conducted to detect the patterns of daily trips and the spread of COVID-19 during that period. The results revealed a closed loop scenario, in which the residents’ travel behavior dynamically changes based on their risk perception of COVID-19 in an infinite loop. A detected lag in the travel behavior between short trips and long trips further worsens the situation and creates more difficulties in finding an effective solution to break the loop. The study shed new light on efforts to contain and control the spread of the coronavirus. The loop can only be broken with proper and prompt mitigation strategies to reduce the burden on hospitals and healthcare systems and save more lives.
Original language | American English |
---|---|
Journal | Transportation Research Interdisciplinary Perspectives |
Volume | 9 |
DOIs | |
State | Published - Mar 2021 |
Disciplines
- Business
- Social and Behavioral Sciences