TY - JOUR
T1 - Shallow Convection on Day 261 of GATE: Mesoscale Arcs
AU - Warner, C.
AU - Simpson, J.
AU - Martin, D. W.
AU - Suchman, D.
AU - Mosher, F. R.
AU - Reinking, R. F.
PY - 1979/12/1
Y1 - 1979/12/1
N2 - On 18 September 1974, a cloud cluster growing in the GATE [Global Atmospheric Research Program] ship array was examined using aircraft flying close to one another at different heights, the geostationary satellite SMS-1, and radar, rawinsonde and ship data, with a view to elucidating mechanisms of convection. In this paper we concentrate analysis on cloudy convection in the moist layer. In and above southerly surface monsoon flow approaching the cluster, clouds indigenous to the moist layer took the form of rows of tiny cumulus, and of arcs of cumulus mediocris, with patterns different from those of deeper clouds. From satellite visible images, arcs were traced for periods exceeding 2 h. Airborne photography showed that the arcs were composed of many small clouds. Radar data showed that they originated after precipitation. Apparently, throughout their life cycle, they perpetuated the pattern of an initiating dense downdraft. Eventually they yielded isolated cumulus congestus, again bearing precipitation. Aircraft recorded the distribution of thermodynamic quantities and winds at altitudes within the mixed layer, and at 537 and 1067 m. These data indicated that the arcs persisted as mesoscale circulations driven by release of latent heat in the clouds, rather than being driven by the original density current at the surface. The cloudy circulations were vigorous near and above cloud base, becoming weaker upward through altitude 1 km. The entire mesoscale circulation systems were of horizontal scale roughly 40 km. The mesoscale cloud patterns of the moist layer appeared to play a primary role in heat transfer upward within this layer, and contributed to the forcing of showering midtropospheric clouds
AB - On 18 September 1974, a cloud cluster growing in the GATE [Global Atmospheric Research Program] ship array was examined using aircraft flying close to one another at different heights, the geostationary satellite SMS-1, and radar, rawinsonde and ship data, with a view to elucidating mechanisms of convection. In this paper we concentrate analysis on cloudy convection in the moist layer. In and above southerly surface monsoon flow approaching the cluster, clouds indigenous to the moist layer took the form of rows of tiny cumulus, and of arcs of cumulus mediocris, with patterns different from those of deeper clouds. From satellite visible images, arcs were traced for periods exceeding 2 h. Airborne photography showed that the arcs were composed of many small clouds. Radar data showed that they originated after precipitation. Apparently, throughout their life cycle, they perpetuated the pattern of an initiating dense downdraft. Eventually they yielded isolated cumulus congestus, again bearing precipitation. Aircraft recorded the distribution of thermodynamic quantities and winds at altitudes within the mixed layer, and at 537 and 1067 m. These data indicated that the arcs persisted as mesoscale circulations driven by release of latent heat in the clouds, rather than being driven by the original density current at the surface. The cloudy circulations were vigorous near and above cloud base, becoming weaker upward through altitude 1 km. The entire mesoscale circulation systems were of horizontal scale roughly 40 km. The mesoscale cloud patterns of the moist layer appeared to play a primary role in heat transfer upward within this layer, and contributed to the forcing of showering midtropospheric clouds
KW - cloud analysis
KW - satellite tracking of clouds
KW - cloud arcs
UR - https://commons.erau.edu/publication/550
U2 - /10.1175/1520-0493(1979)107<1617:SCODOG>2.0.CO;2
DO - /10.1175/1520-0493(1979)107<1617:SCODOG>2.0.CO;2
M3 - Article
VL - 107
JO - Monthly Weather Review
JF - Monthly Weather Review
ER -