Submicrosecond Dynamics of Water Explosive Boiling and Lift-Off from Laser-Heated Silicon Surfaces

S. I. Kudryashov, S. D. Allen

Research output: Contribution to journalArticlepeer-review

Abstract

Explosive boiling and lift-off of a thin layer of micron-sized transparent water droplets from an absorbing Si substrate heated by a nanosecond KrF laser were studied using a contact photoacoustic technique. The compressive photoacoustic response increases steeply to an asymptotic value on the order of the water critical pressure starting at a threshold laser fluence of 0.20 J cm2, where lift-off of the water layer also occurs. Above this threshold, several reproducible discrete multimegahertz components are revealed in Fourier spectra of the acoustic transients, corresponding to nanosecond oscillations of steam bubbles inside the water droplets on the microsecond time scale of the lift-off process. The acoustic pressure buildup, bubble dynamics, and the subsequent lift-off of the thin water layer are interpreted as relaxation stages after near-spinodal explosive boiling of the superheated interfacial water. © 2006 American Institute of Physics.

Original languageAmerican English
JournalJournal of Applied Physics
Volume100
DOIs
StatePublished - Nov 1 2006
Externally publishedYes

Keywords

  • photoacoustic response
  • silicon surfaces
  • submicrosecond dynamics
  • water droplets
  • Heating
  • laser applications
  • oscillations
  • photoacoustic effect
  • silicon
  • substrates
  • boiling liquids

Disciplines

  • Physical Sciences and Mathematics
  • Physics

Cite this