Abstract
Embry-Riddle Aeronautical University (ERAU) has launched several suborbital scientific payloads aboard Blue Origin’s New Shepard in 2017 and 2019. Students continue gaining hands-on experience in rocket design and construction, and payload integration and testing of future and more mature payloads to be launched into space. A Level 3 Rocket is being designed and developed at ERAU to serve as a scaled-down model research platform for launching and testing of payloads that will be later flown in commercial suborbital platforms such as Blue Origin’s New Shepard and PLD space Miura 1 rockets. Computer simulations were conducted to calculate the key parameters such as flight trajectory profiles, stability and flight velocities for different rocket motors configurations. A preliminary design of the rocket was developed using Computer-Aided Design (CAD) software. The rocket will accommodate multiple payloads (Cubesats, NanoLabs, TubeSats) designed and developed in the Payload Applied, Technology and Operations (PATO) laboratory. The rocket will be primarily constructed of carbon fiber composite as it has a high strength to weight ratio. These simulations are used to select a suitable motor for the rocket according to the flight requirements and landing restrictions. This prospective Level 3 Rocket is referred to as Suborbital Technology Experimental Vehicle for Exploration (STEVE). Rocket procedures and results from the design, simulation, construction and assembly will be presented.
Original language | American English |
---|---|
Journal | Default journal |
DOIs | |
State | Published - Jan 1 2020 |
Keywords
- suborbital flight
- Blue Origin
- New Shepard
- sensors
- microgravity
Disciplines
- Aviation and Space Education
- Educational Technology
- Engineering Education
- Systems Engineering