The Complex Cubic-Quintic Ginzburg-Landau Equation: Hopf Bifurcations Yielding Traveling Waves

S.C. Mancas, S. Roy Choudhury, Stefani Mancas

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper we use a traveling wave reduction or a so-called spatial approximation to comprehensively investigate the periodic solutions of the complex cubic–quintic Ginzburg–Landau equation. The primary tools used here are Hopf bifurcation theory and perturbation theory. Explicit results are obtained for the post-bifurcation periodic orbits and their stability. Generalized and degenerate Hopf bifurcations are also briefly considered to track the emergence of global structure such as homoclinic orbits.
Original languageAmerican English
JournalMathematics and Computers in Simulation
Volume74
DOIs
StatePublished - Mar 30 2007

Disciplines

  • Mathematics

Cite this