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Proof is central to the curriculum for undergraduate mathematics majors. Despite transition-to-

proof courses designed to facilitate the transition from computation-based mathematics to proof-

based mathematics, students continue to struggle with all aspects of mathematical proof. In 

particular, research suggests that proof by contradiction is an especially difficult proof method 

for students to construct and comprehend and yet, there are no satisfactory instructional models 

for how to teach the method. The purpose of this paper is to discuss preliminary results of a 

teaching experiment on student comprehension of proof by contradiction within a transition-to-

proof course. Grounded in APOS Theory, this paper will illustrate that a student’s conception of 

mathematical logic, and quantification in particular, plays an important role in their 

comprehension of proof by contradiction. 
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Proof is central to the curriculum for undergraduate mathematics majors. Indeed, the 2015 

CUPM Curriculum Guide to Majors in the Mathematical Sciences contains the following 

recommendation: “Students majoring in the mathematical sciences should learn to read, 

understand, analyze, and produce proofs at increasing depth as they progress through a major" 

(Schumacher & Siegel, 2015, p. 11). Despite transition-to-proof courses designed to facilitate the 

transition from computation-based mathematics to proof-based mathematics, students continue to 

struggle with all aspects of mathematical proof (Samkoff & Weber, 2015). In particular, research 

suggests that proof by contradiction is an especially difficult proof method for students to 

understand and produce (Antonini & Mariotti, 2008; Brown, 2011; Harel & Sowder, 1998). In 

order to address students’ understanding of proof by contradiction, we examined the literature for 

what proof by contradiction means and what is known about how students develop an 

understanding of proof by contradiction. A short summary to these questions is provided below.  

Proof by contradiction is based on the law of the excluded middle: either a statement is true 

or the negation of the statement is true. By showing the negation of the statement cannot be true 

(i.e., leads to a contradiction), the statement must be true. However, some scholars do not 

attribute the law of the excluded middle as the foundation of proof by contradiction. Indeed, Lin, 

Lee, and Wu Yu (2003) state that “the conceptual knowledge of proof by contradiction is the law 

of contrapositive” (p. 4-446). Other scholars do not always distinguish between proof by 

contradiction and proof by contraposition when describing how students understand indirect 

proofs. For example, Antonini and Mariotti (2008) state that the commonality of negating the 

thesis in both methods is enough to consider cognitive aspects of students’ difficulties with both 

methods simultaneously. We consider the two indirect proof methods as having distinct 

underlying concepts: logical equivalence of an implication and its contrapositive 

(Contraposition) and the law of the excluded middle (Contradiction). These distinct underlying 

concepts require cognitive models to consider how students develop an understanding of each 

method separately.  

The only current cognitive models of how students understand proof by contradiction have 

been proposed by Lin, Lee, and Wu Yu (2003) and Antonini and Mariotti (2008). Yet, neither of 



these cognitive models are satisfactory as they do not focus on how students develop an 

understanding of how the law of the excluded middle validates the contradiction proof method. 

Our larger study aims to address this deficiency in the literature by first modeling how students 

could come to understand proof by contradiction and then, using this model, develop 

instructional materials to teach proof by contradiction. The purpose of this paper is to discuss 

preliminary results on a part of this larger study; that is, to discuss preliminary results of a 

teaching experiment on a single student's understanding of proof by contradiction. In particular, 

this paper will address the following question: How does a student's conception of mathematical 

logic affect their understanding of proof by contradiction? What follows is a detailed discussion 

of the theoretical framework we will use to answer this question.  

Theoretical Framework 

Our theoretical framework of choice is APOS Theory – a cognitive framework that considers 

mathematical concepts to be composed of mental Actions, Processes, and Objects that are 

organized into Schemas. What follows are definitions of the mental constructions, along with 

examples within the context of proof by contradiction.  

An Action is a transformation of mathematical objects by the individual requiring memorized 

or external step-by-step instructions on how to perform the operation. In the context of proof by 

contradiction, this may entail a list of steps (either written down or memorized) that a proof by 

contradiction of an implication statement follows. As an individual reflects on an Action, he/she 

can think of these Actions in his/her head without the need to actually perform them based on 

some memorized facts or external guide; this is referred to as a Process. Staying within the 

context of proof by contradiction, a student may interiorize the external list of steps that a 

particular type of proof by contradiction follows so that these steps become generalized to prove 

any statement by contradiction. In this way, the student would not need to write the proof in 

order to talk about what a step may look like in a specific proof. As an individual reflects on a 

Process, they may think of the Process as a totality and can now perform transformations on the 

Process; this totality is referred to as an Object. Again in the context of proof by contradiction, 

this could entail comparing proof by contradiction to similar methods such as proof by cases. 

Finally, a Schema is an individual’s collection of Actions, Processes, Objects, and other Schemas 

that are linked by some general principles to form a coherent framework in the individual’s mind 

(Dubinsky & McDonald, 2001). In the case of proof by contradiction, this may include an 

individual’s general proof Schema, mathematical knowledge Schema, and mathematical logic 

Schema, as well as any steps (external and specific or internal and general) required to write or 

identify a proof by contradiction.  

One of the central goals when using APOS Theory is to develop a series of hypothetical 

constructions students may need to make in order to understand a concept, referred to as a 

genetic decomposition. This cognitive outline is constructed based on an analysis of the historical 

development of the concept in question, a literature review of the concept, and the conception of 

the instructor or researcher. In addition to outlining the mental constructions a student should 

make in order to understand a concept, a genetic decomposition may include a description of 

prerequisite knowledge a student should possess in order to begin developing a concept (Arnon 

et al., 2014). A description of the prerequisite knowledge for proof by contradiction follows. 



First, a student should have a general understanding of the propositional logic that 

underscores all proofs. In particular, a student should be able to perform and understand 

negations of the following types of statements: without quantification, implications, and single-

level quantified statements. This is necessary as every proof by contradiction requires a negation 

of some statement. In addition to understanding the mathematical logic, a student should be able 

to move between semantic, symbolic, and algebraic representations of mathematical statements. 

For example, a student should be able to represent the statement ‘If 𝑎 is even, then 𝑎 + 1 is odd’ 

as the symbolic implication ‘𝑃 → 𝑄’ as well as the algebraic representation ‘If 𝑎 = 2𝑛 for 𝑛 ∈ ℤ, 

then 𝑎 + 1 = 2𝑚 + 1 for 𝑚 ∈ ℤ’. Moving between representations of mathematical statements 

is necessary in any mathematical proof and thus is necessary before developing a notion of proof 

by contradiction. Finally, a student should be familiar with the direct proof method in a 

mathematical context as this is the basis of understanding any proof.  

With this prerequisite knowledge in mind, we developed a preliminary genetic 

decomposition. We should be clear that a genetic decomposition need not be unique and so the 

genetic decomposition below may be one of several different ways in which students may 

develop an understanding of proof by contradiction.  

Preliminary Genetic Decomposition for Proof by Contradiction 
1. Students outline the propositional logic of a given proof to develop specific, step-by-step 

instructions to construct proofs by contradiction for the following types of statements: (i) 

implication, (ii) single-level quantification, and (iii) property claim.  

2. Students interiorize each of the Actions in Step 1 into individual Processes by examining 

the purpose of statements of given proofs. These Processes become general steps to writing 

a proof by contradiction for statements of the form (i), (ii), and (iii).  

3. Students coordinate the Processes from Step 2 by comparing and contrasting the general 

steps to determine the necessary steps for any proof by contradiction. This Process 

becomes general steps to writing any proof by contradiction and identifying a proof as a 

proof by contradiction. 

4. Students encapsulate the Process in Step 3 as an Object by utilizing the law of excluded 

middles to show proof by contradiction is a valid proof method. Alternatively, students 

encapsulate the Process in Step 3 as an Object by comparing proof by contradiction to 

other, similar proof methods. Students can now comprehend proofs on a holistic level. 

5. When necessary, students de-encapsulate the Object in Step 5 into a Process similar to Step 

3 that then coordinates with a Process conception of quantification to prove multi-level 

quantified statements. 

First, note that students’ initial conception of proof by contradiction is through the specific steps 

to construct a proof by contradiction. That is, students think that each of these steps are necessary 

for a proof to be by contradiction. Students may also need the external cues from specific steps, 

such as seeing the word “contradiction” near the end of the proof. Students then reflect on these 

specific steps to considering the general procedure of proof by contradiction. Still, students 

conceptualize a proof by contradiction as a dynamic procedure that must be followed and thus 

their conception closely matches the steps to writing a proof by contradiction. It is only after 

encapsulating the dynamic procedure as a static proof method, by comparing the main idea of the 



method to similar methods, that students do not rely on the steps of a proof by contradiction to 

describe the method. 

Once developed, a genetic decomposition is used as a guide to develop all instructional 

material. One pedagogical approach aligned with APOS Theory is the ACE teaching cycle; an 

instructional approach that consists of three phases: Activities, Classroom discussion, and 

Exercises. In the Activities phase, students work in groups to complete tasks designed to promote 

reflective abstraction. These tasks should assist students in making the mental constructions 

suggested by a genetic decomposition. In the Classroom discussion phase, the instructor leads a 

discussion about the mathematical concepts that the Activities focused on. For example, during 

this phase the instructor may formally state the theorem that was central in the Action phase and 

together with students write its complete proof. In the Exercises phase, students work on 

standard problems designed to reinforce the Classroom discussion and support the continued 

development of the mental constructions suggested by the genetic decomposition. The Exercises 

also provide students with the opportunity to reinforce and apply what they have learned in the 

Activities and Classroom discussion phases to related mathematical concepts (Arnon et al., 

2014). We utilized the proof comprehension assessment model by Mejía-Ramos et al. (2012) to 

develop standard proof comprehension questions for the Exercises. As this assessment model 

was pivotal in the development of instructional materials, we will briefly introduce it below. 

Mejía-Ramos et al. (2012) presented a multidimensional model for assessing proof 

comprehension in undergraduate mathematics. This model contains seven different aspects of 

proof split into two categories: local and holistic. Local types of assessment focus on only one, or 

a small number, of statements within a proof, whereas holistic types of assessment focus on 

student understanding of a proof as a whole. These seven types of assessment are reproduced 

below: 

1. Meaning of terms and statements: items of this type measure students understanding of 

key terms and statements in the proof; 

2. Logical status of statements and proof framework: these questions assess students’ 

knowledge of the logical status of statements in the proof and the logical relationship 

between these statements and the statement being proven; 

3. Justification of claims: these items address students’ comprehension of how each 

assertion in the proof follows from previous statements in the proof and other proven or 

assumed statements; 

4. Summarizing via high-level ideas: these items measure students’ grasp of the main idea 

of the proof and its overarching approach; 

5. Identifying the modular structure: items of this types address students’ comprehension of 

the proof in terms of its main components/modules and the logical relationship between 

them; 

6. Identifying the general ideas or methods in another context: these questions assess 

students’ ability to adapt the ideas and procedures of the proof to solve other proving 

tasks; 

7. Illustrating with examples: items of this type measure students’ understanding of the 

proof in terms of its relationship to specific examples. (Mejía-Ramos et al., 2012, p. 15-

16). 



These assessment questions revolve around the reading and understanding of a presented proof. 

While the authors caution that all types of assessment questions may not be appropriate for some 

presented proofs, such as if the proof was too short to warrant breaking into modules, we choose 

proofs such that each type of assessment question could be applied.  

In summary, we used APOS Theory to develop a hypothetical model (genetic 

decomposition) of possible mental constructions students may need to make in order to develop 

an understanding of proof by contradiction. We then introduced the ACE teaching cycle, an 

instructional method closely aligned with APOS Theory, which we used to develop lessons on 

proof by contradiction. We used the proof comprehension assessment model by Mejía-Ramos et 

al. (2012) to develop the routine exercise questions for the Exercise phase of the ACE teaching 

cycle. The methodology section will provide a detailed explanation of the lessons on proof by 

contradiction as well as provide the context of the study. 

Methodology 

In order to assess our preliminary genetic decomposition for proof by contradiction, we 

conducted a teaching experiment (Steffe & Thompson, 2000). Unlike a typical instructional 

sequence of the ACE teaching cycle that, in a regular classroom, usually lasts for a week, this 

teaching experiment consisted of 5 shorter, consecutive teaching sessions each mimicking the 

ACE teaching cycle. That is, each session consisted of: students working on the Activity 

worksheet focusing on a particular component of the genetic decomposition for proof by 

contradiction (A); a discussion about the concepts from the worksheet (C); and a typical series of 

proof comprehension questions related to the content of the worksheet (E).  

Our teaching experiment was conducted at a large, public R1 university in the southeastern 

United States with students from a transition-to-proof course. This course, Bridge to Higher 

Mathematics, is the first course in which students at this university are formally introduced to 

mathematical proofs and their accompanying methods of proof. Bridge to Higher Mathematics 

has the following general learning outcomes: 

 Basic Logic (e.g. truth tables, negation, quantification), 

 Proof Methods (e.g., direct, contradiction, induction), 

 Introductory Set Theory (e.g., union, intersection, power set, cardinality), and 

 Introductory Analysis (e.g., least upper bound and greatest lower bound, open/closed sets, 

limit points). 

We began with teaching episodes two weeks into the course, just after a review of basic logic 

and an introduction to direct proofs. Bridge to Higher Mathematics is a primarily lecture-based 

course where proof and proof methods are taught primarily through proof construction (i.e., 

asking students to replicate proofs). Thus, in both teaching style and assessment, the designed 

teaching experiment deviated from the regular classroom. However, the teaching episodes did 

correspond to the content and proofs that were normally covered in the course.  

Data for this report was collected during Summer 2016 from teaching episodes with 

Chandler. Chandler was an untraditional student: he had already graduated once with a bachelor 

degree (in an unspecified topic) and was unsure as to whether or not he wanted to complete a 

bachelor’s degree in mathematics. As a senior, Chandler had already taken courses beyond the 



prerequisites for Bridge to Higher Mathematics, including Differential Equations, Probability 

Theory, and Vector Calculus. However, none of these additional mathematics courses required 

proof writing and thus Bridge to Higher Mathematics was still Chandler’s first experience 

learning how to read and write formal proofs. While Chandler initially consented to completing 

all five teaching episodes, he dropped the course before mid-semester. As such, Chandler only 

completed the first three teaching episodes.  

We choose to focus on Chandler for this preliminary report for two primary reasons. First 

and foremost, Chandler’s progression of understanding proof by contradiction is similar to the 

majority of other participants and thus can be considered representative of a general participant’s 

understanding. In addition, Chandler was open to communicating, answering, and asking 

questions without any reservation. This provided us with rich data on his thought process. The 

next section will describe how we analyzed Chandler’s thought process through the three 

teaching episodes he completed. 

Data Analysis 

All three teaching sessions were video recorded and then transcribed by the 

teacher/researcher. Transcripts of these three sessions went through multiple passes of analysis. 

First, we identified Chandler’s conception of proof by contradiction, according to APOS Theory, 

for each teaching episode. Next, we identified Chandler’s local and holistic understanding of 

proof by contradiction and proof in general, according to the proof comprehension assessment 

model by Mejia Ramos et al. (2012), during each teaching episode. We then open coded for 

other themes that affected Chandler’s understanding of proof by contradiction, during which 

quantification emerged. Finally, we examined quantification’s role in Chandler’s understanding 

per teaching episode. What follows are the results from this analysis. 

Results 

For each episode, we will first present the statement and proof Chandler was asked to read as 

well as provide the comprehension questions he was then asked to complete. Afterwards, we will 

provide some of Chandler's responses that best illustrate his understanding of proof by 

contradiction in general and his understanding of the presented proof. When applicable, we will 

include a discussion of how mathematical logic, and quantification in particular, affected 

Chandler’s proof comprehension. 

Pre-Teaching Episodes 

Before the first teaching episode, we asked Chandler a few basic questions to ascertain his 

background with mathematical proof. In particular, we were focused on determining whether 

Chandler possessed the following prerequisite knowledge necessary to begin developing a 

conception of proof by contradiction: mathematical logic (especially negating statements), how 

to transition between representations, and proof in general. Chandler exhibited at least an Action 

conception of mathematical logic as he was able to describe rules to use in order to negate 

propositional statements. Chandler was also able to answer questions that required him to 

transition between mathematical statements, their propositional representations, and their 

algebraic representations. Finally, with respect to his understanding of proof in general, Chandler 

gave the following definition:  



An effort to show something is true or false based on real evidence and facts. 

We see his definition as a dynamic procedure, i.e. an effort to show something, and so infer 

Chandler possesses a Process conception of proof. Based on his responses, we believe Chandler 

had the prerequisite knowledge to begin developing a conception of proof by contradiction.  

We also wanted to know what conception, if any, Chandler had of proof by contradiction 

before the first teaching episode. When asked for a definition of proof by contradiction, he 

stated: 

 Demonstrating the opposite of a statement is false, so the statement is true. 

Note there is no mention of an assumption or contradiction in terms of “demonstrating the 

opposite of a statement is false” and thus this is not a complete definition of proof by 

contradiction. At most, this is a definition for a general type of indirect proof that utilizes the 

tautological equivalence of a double-negated statement and the statement itself. We therefore do 

not believe Chandler has a conception of a mathematical proof by contradiction. 

Teaching Episode 1 

Teaching episode 1 began with Chandler converting a series of statements into propositional 

and predicate logic on his own. After checking his answers to these conversions, it was clear that 

Chandler was able to convert mathematical statements with a single quantifier into a logical 

form. Chandler was then asked to read the following statement and proof.  

Statement 1: The set of primes is infinite. 

Proof 1: Suppose the set of primes is finite. Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 

𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘. Let 𝑛 be one more than the product of all of them. That is, 𝑛 =
(𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1. Then 𝑛 is a natural number greater than 1, so 𝑛 has a prime divisor 𝑞. 

Since 𝑞 is prime, 𝑞 > 1. Since 𝑞 is prime and 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 are all of the primes, 𝑞 is one 

of the 𝑝𝑖 in the list. Thus, 𝑞 divides the product 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘. Since 𝑞 divides 𝑛, 𝑞 

divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘). But this difference is 1, so 𝑞 = 1. From the 

contradiction, 𝑞 > 1 and 𝑞 = 1, we conclude that the assumption that the set of primes is 

finite is false. Therefore, the set of primes is infinite. 

Chandler was then prompted to answer the following comprehension questions on his own. 

1. Please give an example of a set that is infinite and explain why it is infinite.  

2. Why does 𝑛 have to have a prime divisor? 

3. Why exactly can one conclude that 𝑞 divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘)? 

4. What is the purpose of the statement “Let 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 𝑝1 <
𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘.”? 

5. Summarize in your own words the main idea of this proof. 

6. What do you think are the key steps of the proof? 

7. In the proof, we define 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1. Would the proof still work if we instead 

defined 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 31? Why or why not? 

8. Define the set 𝑆𝑘 = {2, 3, 4, … , 𝑘} for any 𝑘 > 2. Using the method of this proof, show that 

for any 𝑘 > 2, there exists a natural number greater than 1 that is not divisible by any 

element in 𝑆𝑘. 



Considerable attention was given to local comprehension questions 1-4 as Chandler was not able 

to discuss questions 5-8. We highlight his most enlightening responses to the Activity and these 

comprehension questions below.  

After reading the statement and its proof, Chandler was asked to describe or define proof by 

contradiction. He said:  

Aren’t you supposed to show not the conclusion, or try to prove not the conclusion and try to 

come up with something that is? 

While this definition discusses the final steps of a proof by contradiction, it focuses on “showing 

not the conclusion” rather than discussing how the initial assumption and contradiction relate to 

the original statement. Thus, we believe Chandler exhibited a PreAction conception of proof by 

contradiction. 

Chandler was able to describe the meaning of key words and phrases, such as when he 

described infinity as:  

Every time it [a real number] goes up, you can still go up by 1.  

However, Chandler was unable to describe the purpose of statements and provide justification 

for lines in the proof. For example, he initially wrote that the purpose of the statement ‘Let 

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 be all those primes with 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑝𝑘’ was: 

To construct an infinite number of possibilities for number 𝑛, since numbers are composites 

of primes 𝑝 and 𝑛 is not a particular natural number. 

When the teacher asked Chandler to clarify his written response during the discussion, he said:  

Infinity. Uh, well the set of primes is infinite. [long pause] Is it, 𝑛 is composed of a finite 

number of parts? 

In both cases, Chandler did not recognize the statement as defining the assumed finite set of 

primes so that they may be used to produce a new prime. When the teacher asked Chandler to 

provide justification for the line ‘𝑞 divides the difference 𝑛 − (𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋅ … ⋅ 𝑝𝑘)’, Chandler 

realized that he wrote multiple answers and even expressed confusion on what he was thinking: 

I wonder what I decided… there’s several things boxed in. 

All of the answers Chandler initially provided involved rewriting statements in the proof without 

further clarification. Even after an extended discussion considering the statement with a small 

number of primes, Chandler was unable to provide justification for the line. These examples 

suggest that while Chandler could understand what individual statements meant, he did not know 

how these statements logically or mathematically followed from one another. Thus, we believe 

Chandler showed some local understanding of the presented proof.  

When asked to summarize the main idea of the proof, Chandler restated the statement. When 

asked what the key steps of the proof were, he said:  

Supposing the contradiction is true, that the set of primes is finite and showing how to prove 

that by reducing an infinite number of primes down to the number 1… I don’t know what that 

means. 



When asked whether the proof would still work if we changed 𝑛 = (𝑝1𝑝2𝑝3 … 𝑝𝑘) + 1 to 𝑛 =
(𝑝1𝑝2𝑝3 … 𝑝𝑘) + 31, he said that it would “Because the difference is 31, so 𝑞 is 31 and 𝑞 is still 

greater than 1. I don’t know.” In the questions above, Chandler does not exhibit any holistic 

understanding. Yet, Chandler does show some holistic understanding in his attempt to show that 

for any 𝑘 > 2, there exists a natural number greater than 1 that is not divisible by any element in 

𝑆𝑘 = {2, 3, 4, … , 𝑘}. Chandler was able to identify the previous construction of 𝑛 as being 

necessary for the new proof and began his proof by appropriately modifying the new number 

𝑛 = (2 ⋅ 3 ⋅ 4 ⋅ … ⋅ 𝑘) + 1.  Rather than showing that this number is not divisible by any element 

in 𝑆𝑘, Chandler tried to mimic the presented proof. It is likely that Chandler was unsuccessful in 

writing the proof because he did not understand the multi-level quantified statement and, in 

particular, did not know how to negate this statement. Consider the following discussion between 

Chandler and the teacher about his proof: 

T: Any idea how to negate this statement? 

C: And I thought of that but I just, it didn’t seem following along, and I sure didn’t [know] 

how to get it following along like this one. I think the contradiction would be: for all 

natural numbers greater than 1, wait [pause, mumbling to self] for all natural numbers 

greater than 1… I don’t know.  

T: Okay, let’s try to rewrite this in symbols, maybe.  

[After prompting, Chandler writes ∀𝑘 > 2, ∃𝑛 > 1 ∈ ℕ 𝑠. 𝑡.  𝑠 ∤ 𝑛 ∀𝑠 ∈ 𝑆𝑘] 

T: Can you negate this now? 

C: I think, piece by piece. There’s a whole string of these, I don’t know. I think for all n less 

than or equal to 1, or yeah, is that right? 

T: We also do the, for every k greater than 2, so maybe it’s “there exists a k greater than 2” 

so there is actually one of them. 

C: Or, wait, which part? You don’t negate this [points at 𝑛 > 1], you negate this [points at 

∀]. The quantifier? 

T: Yes, yes.  

C: So you don’t negate the [trails off]. 

[After more discussion on negating parts of the statement.] 

C: I’m trying to remember [pause] such that for some s, s divides n, for s in the set. Is that the 

entirety? 

While Chandler was unable to negate the multi-quantified statement (either as a mathematical 

statement or in algebraic notation), he did say  

And I thought of that [negating the statement] but I just, it didn’t seem following along, and I 

sure didn’t how to get it following along like this one… 

which indicates that he may have been able to complete proof had he been able to negate the 

multi-quantified statement. We also see phrases such as “I’m trying to remember…” and errors 

such as “I think [the negation would be] for all 𝑛 less than or equal to 1…” that indicate 

Chandler may need an external guide or table to negate quantified statements even single-

quantified statements. At least in this case, it is possible that Chandler’s conception of 

quantification was inhibiting his holistic comprehension of the proof.  



Teaching Episode 2 

Teaching episode 2 began with Chandler examining the following statement and proof, after 

which he was asked to provide a definition of proof by contradiction based on the presented 

proof. 

Statement 2: If every even natural number greater than 2 is the sum of two primes, then every 

odd natural number greater than 5 is the sum of three primes.  

Proof 2: Assume that every even natural number greater than 2 is the sum of two primes and 

that it is not the case that every odd natural number greater than 5 is the sum of three primes. 

Then there exists an odd natural number greater than 5 that is not the sum of three primes, 

call it 𝑘. Then 𝑘 = 2𝑛 + 1. Since 𝑘 > 5, 2𝑛 + 1 > 5 and so 𝑛 > 2. Rewriting 𝑘, we have 

𝑘 = 2(𝑛 − 1) + 3. Since 𝑛 > 2, 2(𝑛 − 1) > 2 and so is the sum of two primes: 𝑝 and 𝑞. 

Thus 𝑘 = 𝑝 + 𝑞 + 3. This is a contradiction as we assumed 𝑘 was not the sum of three 

primes. Therefore if every even natural number greater than 2 is the sum of two primes, then 

every odd natural number greater than 5 is the sum of three primes. 

After a discussion on the underlying structure of the presented proof and how this related to 

proof by contradiction in general, Chandler was asked to answer the following comprehension 

questions on his own.  

1. Please give an example of a prime number and explain why it is prime.  

2. Why is every even natural number greater than 2 the sum of two primes? 

3. Why exactly can one conclude that 𝑘 − 3 is the sum of two primes? 

4. What is the purpose of the statement “Since 𝑘 > 5, 2𝑛 + 1 > 5 and so 𝑛 > 2.”? 

5. Summarize in your own words the main idea of this proof. 

6. What do you think are the key steps of the proof? 

7. In the proof, we rewrite 𝑘 = 2(𝑛 − 1) + 3. Would the proof still work if we instead 

rewrite 𝑘 = 2(𝑛 − 2) + 5? Why or why not? 

8. Using the method of this proof, show that: if every odd natural number greater than 5 is 

the sum of three primes and 3 is one of those primes, then every even natural number 

greater than 2 is the sum of two primes. 

Unlike teaching episode 1, Chandler was able to talk more about the holistic questions than he 

could previously. We highlight his most enlightening responses below.   

After discussing the specific structure of the presented proof, Chandler came up with the 

following step-by-step guide for a general implication statement: 

 Contradiction ∼ (𝑃 → 𝑄) ← begin negation 

 ∼ 𝑄  

 ⋮  

 𝑄  

 (𝑄 ∧ ∼ 𝑄) > contradiction 

 

Figure 1: Chandler’s written structure (left) and his recreated structure (right)



First, note that the logical connection between the assumption, ∼ (𝑃 → 𝑄), and the next line, ∼

𝑄, is omitted as well as the logical connection between the assumption and contradiction in order 

to conclude the proof. Also, there is no mention of the role of 𝑃 in the proof. These omissions 

indicate that the structure above is meant to write a complete proof by contradiction and not to 

outline the logical structure of the method. In other words, Chandler focus is on the procedure 

and not in understanding why the procedure works. Thus, we believe he exhibits an Action 

conception of proof by contradiction.  

After reading the first line of the proof and before attempting any of the comprehension 

questions, Chandler said:  

I’m not sure when something contradicts, if you begin with 1, step 1. The assumption, or the 

given, was that P and [sic] Q. If you begin with P and not Q, it’s already a contradiction, 

isn’t it? No?  

Once the teacher explained the logical equivalence between the hidden initial assumption step, ∼

(𝑃 → 𝑄), and the first statement of the proof, 𝑃 ∧ ∼ 𝑄, Chandler was able to understand the 

logical relation between the statement and the first line of the proof. However, rather than 

include this equivalence in his proof by contradiction steps above, he only included ∼ 𝑄, the 

consequent of 𝑃 ∧ ∼ 𝑄 the proof uses to move forward and end up with a contradiction. While 

his steps may now avoid attending to local understanding of the statement and assumption, we 

see an instance in which Chandler, unprompted, attended to the local understanding of a 

particular proof by examining the propositional logic.   

When writing his proof for comprehension question 8, Chandler had difficulty negating 

statement 𝑄 (a key step in his current conception for proof by contradiction) without first 

translating the statement into propositional logic and using rules to negate the propositional 

logic. An excerpt of what transpired is provided below: 

T: Do you have any ideas on how to approach this proof? [Long pause] 

C: Not Q would be ‘every even natural number greater than 2 is not the sum of two primes’? 

No, all? I don’t know.  

[Teacher prompts Chandler to write the statement in propositional logic] 

T: Alright. So for every n here, that’s how you said it to me. So parentheses for all n, in the 

natural numbers, if n is greater than 2, then n is p + q. So what would be the negation of this 

statement? 

C: There is a natural number…  

T: There is a natural number. 

C: n greater than 2 that is not equal to p + q.  

We see Chandler utilizing his general procedure for implication statements by starting with 

negating statement 𝑄. Once he wrote the statement in propositional logic, Chandler was able to 

recognize the negation of a ‘for all’ statement as ‘there exists’ and continue using his procedure 

to complete the proof. This suggests that Chandler’s conception of quantification still inhibited 

his holistic understanding of the proof. 

 

 



Teaching Episode 3 

Teaching episode 3 began with Chandler examining the following statement and proof, after 

which he was asked to provide a definition of proof by contradiction based on the presented 

proof.  

Statement 3: There is no odd integer that can be expressed in the form 4𝑗 − 1 and in the form 

4𝑘 + 1 for integers 𝑗 and 𝑘. 

Proof 3: Assume it is not true that there is no odd integer that can be expressed in the form 

4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. Then there is an odd integer that can be 

expressed in the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. Let 𝑛 be that 

integer; that is, ∃𝑛 ∈ ℕ such that 𝑛 = 4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈ ℤ. Then 4𝑗 − 1 =
4𝑘 + 1 and so 2𝑗 = 2𝑘 + 1. Note that 2𝑗 is an even number and, since 2𝑗 = 2𝑘 + 1, 2𝑗 is an 

odd number. A number cannot be both even and odd and thus this is a contradiction. 

Therefore, it is not true that it is not true that there is no odd integer that can be expressed in 

the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. In other words, there is no odd 

integer that can be expressed in the form 4𝑗 − 1 and in the form 4𝑘 + 1 for integers 𝑗 and 𝑘. 

Chandler was then asked to compare and contrast Proof 2 and Proof 3. After a discussion on the 

similarities and differences of the underlying structures of these proofs how this related to proof 

by contradiction in general, Chandler was asked to answer the following comprehension 

questions on his own.  

1. Please give an example of an integer that is odd and explain why it is odd.  

2. What kinds of numbers can be expressed in the form 4𝑗 − 1? 

3. Why exactly can we assume “∃𝑛 ∈ ℕ such that 𝑛 = 4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈

ℤ.”? 

4. What is the purpose of the statement “Note that 2𝑗 is an even number and, since 2𝑗 =
2𝑘 + 1, 2𝑗 is an odd number.”? 

5. Summarize in your own words the main idea of this proof. 

6. What do you think are the key steps of the proof? 

7. In the statement, we have 4𝑗 − 1 and 4𝑘 + 1. Would the proof still work if we instead 

have 4𝑗 − 3 and 4𝑘 + 3? Why or why not? 

8. Using the method of this proof, show that there is no odd integer than can be expressed in 

the form 8𝑗 − 1 and 8𝑘 + 1 for integers 𝑗 and 𝑘. 

The teacher/research focused Chandler's attention on the holistic comprehension questions as 

Chandler was able to give quick, confident answers to the local comprehension questions. We 

provide some of his most enlightening responses below. 

As mentioned above, Chandler was asked to compare Proof 2 and Proof 3 in their presented 

form. An excerpt of this comparison is provided below, along with a recreation of Chandler’s 

two proof structures that he eventually compared in place of the semantic representations of the 

proofs. 

C: They are both contradiction, proof by contradiction, and [pause] I don’t know. 

T: Well, maybe… let’s see. You have the structures of both proofs, right? 

[Teacher prompts Chandler to examine the structures he already developed.] 



T: So you were saying something before you started talking about the ∼ 𝑄; you were 

pointing at [steps] 5-7. 

C: Yeah. Those are similar – [steps] 4-7 are similar to this, [steps] 4-6, of course. 

Table 2: Recreation of Chandler's proof structures for implication (left) and nonexistence (right) 

statements. 

𝑃 → 𝑄 (∄𝑥)(𝑃(𝑥)) 

1. 𝑃 ∧∼ 𝑄 

2. ∼ 𝑄 

3. ∼ 𝑄 → 𝑅1 

4. 𝑅1 → 𝑅2 

5. 𝑅2 → 𝑅3 

6. 𝑅3 → 𝑄 

7. 𝑄 ∧ ∼ 𝑄 

8. ∼ (𝑃 ∧ ∼ 𝑄) = 𝑃 → 𝑄 

1. Assume ∼ (∄𝑥)(𝑃(𝑥)) 

2. ∼ (∃𝑥)(𝑃(𝑥)) [sic] 

3. 𝑃(𝑛) 

4. Algebra until contradiction: 4𝑗 − 1 =
4𝑘 + 1 means 2𝑗 = 2𝑘 + 1 

5. ∼ (∼ (∄𝑥)𝑃(𝑥)) 

6. (∄𝑥)𝑃(𝑥) 

What Chandler is talking about here is the role of parts of the proof. In particular, he is 

considering how each structure arrives at the contradiction and uses this contradiction to 

complete the proof (Note: although he initially excludes step 8 in the implication structure as 

seen in Table 2, he clarifies the role of this step later in the discussion). Chandler uses this insight 

when he developed a general set of steps for any kind of proof by contradiction, replicated 

below: 

1. Assume the claim is false.  

2. Rewrite the assumption. 

3. Do algebra until contradiction. 

4. The assumption is false, so the original claim is true.  

Chandler leveraged the propositional and quantified logical structure of the proofs to produce a 

general, non-logical list of steps for any proof by contradiction and thus we believe he developed 

a Process conception of proof by contradiction. 

Chandler used of the general steps above to identify the purpose of single statements in the 

presented proof. When asked why the proof can assume ‘there is an odd integer 𝑛 such that 𝑛 =
4𝑗 − 1 and 𝑛 = 4𝑘 + 1 for 𝑗, 𝑘 ∈ ℤ’, Chandler responded: 

Because we are claiming the negation of “there is no odd integer 𝑛 such that 𝑛 = 4𝑗 − 1 and 

𝑛 = 4𝑘 + 1” which is “there is an odd integer 𝑛…” 

We see that Chandler recognized ‘there is an odd integer 𝑛…’ as a rewrite of the assumption 

without needing to refer to the logical equivalence of the statements. In addition, Chandler 

identified that the purpose of the statement ‘Note that 2𝑗 is an even number and, since 2𝑗 = 2𝑘 +
1, 2𝑗 is an odd number’ was to identify the contradiction. In both cases, we see Chandler relating 

the logical status and justification of statements to the general steps he has developed for a proof 

by contradiction. In doing so, he no longer needed to refer to the underlying structure of the 

proof in order to locally comprehend the presented proof.  



Unlike teaching episodes 1 and 2, Chandler was able to describe the key steps of the 

presented proof and stated: 

C: Rewording it, I think. Rewording the claim into a negation and the algebra.  

T: That makes sense. Alright. 

C: For this one. I mean… I don’t know.  

What Chandler is describing as the key steps for this proof are steps 2 and 3 for general proofs 

by contradiction that he constructed during the Discussion of this teaching episode, though he 

clarifies that these may only be the key steps for this proof. Based on the previous steps he has 

listed as key steps, it seems that Chandler conceptualized the key steps of a proof as the steps in 

which he found to be most difficult. With this in mind, his clarification that the key steps of 

another proof may be different likely refers to the idea that the difficult steps of another proof 

may be different and not that the general steps of another proof by contradiction may be 

different. Thus, we believe Chandler exhibits holistic understanding of the presented proof based 

on his general understanding of proof by contradiction. 

Discussion 

It was evident that logic, and quantification in particular, played an important role in 

Chandler’s understanding of particular proofs and proof by contradiction in general. First, he 

leveraged propositional logic to develop specific steps for a particular kind of proof by 

contradiction as well as considered the logical connection between the statement and assumption 

of a particular proof. We also observed that Chandler’s initial difficulties with negating 

quantified statements inhibited his ability to transfer the methods of a particular proof into a 

similar context. By the end of the teaching experiment, Chandler developed a list of general steps 

any proof by contradiction should contain through the comparison of two different logical 

structures of particular proofs by contradiction. These steps not only aided Chandler in 

transferring the method of one proof to similar proof, but they aided Chandler in recognizing the 

logical status and justification of statements in a particular proof.  

Chandler’s conception of mathematical logic seemed to, at times, inhibit his proof 

comprehension. In particular, Chandler exhibited a need to convert statements into propositional 

or predicate logic in order to either negate the statement or recognize the logical relation between 

pairs of statements. This is especially important to highlight for proof by contradiction as 

students are not convinced of the validity of the proof method (Brown, 2011). However, by 

exploring the logical relation between the assumption, contradiction, and original statement, 

students may become convinced and thus more accepting of the method. At the very least, we 

found that prompting Chandler to explore the logical relation between statements in a proof and 

to develop key steps aided him in developing a robust understanding of proof by contradiction.  

Future Plans 

Overall, the teaching experiment seemed to aid Chandler in developing a robust 

understanding of proof by contradiction by focusing on the logical relationships within proofs. 

These results further a growing belief that attending to the logical relationship of statements may 

greatly improve proof comprehension (Brown, 2013; Hodds et al., 2014). Before we consider the 



teaching experiment useful to a general student at the university, we need to consider more case 

studies. Five more students from Bridge to Higher Mathematics volunteered and participated in 

at least 3 teaching episodes during Fall 2016. We plan to analyze these students’ understanding 

of proof by contradiction in terms of APOS Theory and their understanding of specific proofs via 

the proof comprehension assessment model by Mejía-Ramos et al. (2012) in a similar fashion to 

Chandler. Positive results from these cases would strengthen our claim that the teaching 

experiment would be useful for general transition-to-proof students and allow us to examine the 

role of mathematical logic in understanding proof by contradiction.  
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